

Institute for IIT-JAM I CSIR-NET/JRF I U-SET I GATE I JEST I TIFR I BARC

Dedicated to excellence...

GATE (MATHEMATICAL PHYSICS)

PREVIOUS YEAR'S QUESTIONS WITH ANSWER (CHAPTER-WISE)

R B	MATRICES
--------	----------

- **VECTOR ANALYSIS**
- **FOURIER ANALYSIS & LAPLACE TRANSFORM**
- **COMPLEX ANALYSIS**
- **DIFFERENTIAL EQUATION**
- **OTHER QUESTIONS**

"We Believe In Quality Education"

MATRICES

1.	Consider an anti-symmetric tensor P_{ij} with indices I and j The number of independent components of the tensor is. (a) 3 (b) 10 (c) 9	running from 1 to 5. [GATE-2010] (d) 6
2.	The eigenvalues of the matrix $\begin{pmatrix} 2 & 3 & 0 \\ 3 & 2 & 0 \end{pmatrix}$ are.	[GATE-2010]
	$\begin{array}{c} \text{(a) 5, 2, -2} \\ \text{(c) 5, 1, -1} \end{array} \qquad \begin{array}{c} \text{(b) -5, -1, -1} \\ \text{(d) -5, 1, 1} \end{array}$	
3.	Two matrices A and B are said to be similar if $B=P^{-1}AP$ matrix P. Which of the following statements is NOT TRU (a) Det A = Det B (b) Trace of A = Trace of B (c) A and B have the same eigenvectors (d) A and B have the same eigenvalues	for some invertible JE? [GATE-2010]
4.	A 3×3 matrix has elements such that its trace is 11 and it eigenvalues of the matrix are all known to be positive int eigenvalues of the matrix is. (a) 18 (b) 12 (c) 9	s determinant is 36. The egers. The largest [GATE-2010] (d) 6
5.	The number of independent components of the symmetri	c tensor A_{ij} with indices
	i, j = 1, 2, 3 is.	[GATE-2012]
	(a) 1 (b) 3 (c) 6	(d) 9
	CAREKE SPECIKA	
6.	The eigenvalue of the matrix $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ are	[GATE-2012]
	(a) 0, 1, 1 (b) 0, $-\sqrt{2}, \sqrt{2}$ (c) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$	(d) $\sqrt{2}$, $\sqrt{2}$, 0
7.	The degenerate eigenvalue of the matrix $\begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix}$ be an integer)	is (your answer should [GATE-2013]
8.	The matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ is.	[GATE-2014]
	(a) Orthogonal(b) symmetric(c) anti-symmetric(d) Unitary	2

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUNCONTACT:- +919045460409, +919870827730website:- www. www.careerspectra.in

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. www.careerspectra.in

VECTOR ANALYSIS

1. If a force \vec{F} is derivable from a potential function V(r), where *r* is the distance from the origin of the coordinate system, it follows that: [GATE-2011] (a) $\vec{\nabla} \times \vec{F} = 0$ (b) $\vec{\nabla} \cdot \vec{F} = 0$ (c) $\vec{\nabla} V = 0$ (d) $\nabla^2 V = 0$

2. The unit vector normal to the surface $x^2 + y^2 - z = 1$ at the point P(1, 1, 1) is: : [GATE-2011] (a) $\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$ (b) $\frac{2\hat{i}+\hat{j}-\hat{k}}{\sqrt{6}}$ (c) $\frac{\hat{i}+2\hat{j}-\hat{k}}{\sqrt{6}}$ (d) $\frac{2\hat{i}+2\hat{j}-\hat{k}}{3}$

3. Consider a cylinder of height *h* and radius *a*, closed at both ends, centered at the origin. Let $\vec{r} = \hat{i}x + \hat{j}y + \hat{k}z$ be the position vector and \hat{n} be a unit vector normal to the surface. The surface integral $\int_{s} \vec{r} \cdot \hat{n} ds$ over the closed surface of the cylinder is:

(a)
$$2\pi a^2 (a + h)$$
 (b) $3\pi a^2 h$
(c) $2\pi a^2 h$ (d) zero
4. Identify the correct statement for the following vectors $\vec{a} = 3\hat{i} + 2\hat{j}$ and $\vec{b} = \hat{i} + 2\hat{j}$. [GATE-2012]

- (a) The vectors \vec{a} and \vec{b} are linearly independent
- (b) The vectors \vec{a} and \vec{b} are linearly dependent
- (c) The vectors \vec{a} and \vec{b} are orthogonal
- (d) The vectors \vec{a} and \vec{b} are normalized
- 5. If \vec{A} and \vec{B} are constant vectors, then $\vec{\nabla}(\vec{A}.(\vec{B}\times\vec{r}))$ is. [GATE-2013]

(a) $\vec{A} \cdot \vec{B}$ (b) $\vec{A} \times \vec{B}$ (c) \vec{r} (d) zero

6. The unit vector perpendicular to the surface $x^2 + y^2 + z^2 = 3$ at the point (1, 1, 1) is: [GATE-2014]

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUNCONTACT:- +919045460409, +919870827730website:- www. www.careerspectra.in

(a)
$$\frac{\hat{x}+\hat{y}-\hat{z}}{\sqrt{3}}$$
 (b) $\frac{\hat{x}-\hat{y}-\hat{z}}{\sqrt{3}}$ (c) $\frac{\hat{x}-\hat{y}+\hat{z}}{\sqrt{3}}$ (d) $\frac{\hat{x}+\hat{y}+\hat{z}}{\sqrt{3}}$

7. The direction of $\vec{\nabla} f$ for a scalar field $f(x, y, z) = \frac{1}{2}x^2 - xy + \frac{1}{2}z^2$ at the point P(1,1,2) is. [GATE-2016] (a) $\frac{(-\hat{j}-2\hat{k})}{\sqrt{5}}$ (b) $\frac{(-\hat{j}+2\hat{k})}{\sqrt{5}}$ (c) $\frac{(\hat{j}-2\hat{k})}{\sqrt{5}}$ (d) $\frac{(\hat{j}+2\hat{k})}{\sqrt{5}}$

8. In spherical polar coordinates (r, θ, ϕ) , the unit vector $\hat{\theta}$ at $(10, \pi/4, \pi/2)$ is. [GATE-2018] (a) \hat{k} (b) $\frac{1}{\sqrt{2}}(\hat{j} + \hat{k})$ (c) $\frac{1}{\sqrt{2}}(-\hat{j} + \hat{k})$ (d) $\frac{1}{\sqrt{2}}(\hat{j} - \hat{k})$

9. Given $\vec{V}_1 = \hat{\iota} - \hat{j}$ and $\vec{V}_2 = -2\hat{\iota} + 3\hat{j} + 2\hat{k}$, which one of the following \vec{V}_3 makes $(\vec{V}_1, \vec{V}_2, \vec{V}_3)$ a complete set for a three dimensional real linear vector space?

- [GATE-2018]
- (a) $\vec{V}_3 = \hat{\imath} + \hat{\jmath} + 4\hat{k}$ (b) $\vec{V}_3 = 2\hat{\imath} \hat{\jmath} + 2\hat{k}$ (c) $\vec{V}_3 = \hat{\imath} + 2\hat{\jmath} + 6\hat{k}$ (d) $\vec{V}_3 = 2\hat{\imath} + \hat{\jmath} + 4\hat{k}$

FOURIER ANALYSIS & LAPLACE TRANSFORM

1. If $f(x) = \begin{cases} 0 & \text{for } x < 3 \\ x - 3 & \text{for } \ge 3 \end{cases}$ then the Laplace transform f(x) is. (a) $s^{-2}e^{3s}$ (b) $s^{2}e^{3s}$ (c) s^{-2} (d) $s^{-2}e^{-3s}$

- 2. The value of $\int_0^3 t^2 \delta(3t 6) dt$ (upto one decimal place) [GATE-2015]
- 3. The Heaviside function is defined as $H(t) = \begin{cases} +1, & \text{for } t > 0 \\ -1, & \text{for } t < 0 \end{cases}$ and its Fourier transform is given by $-\frac{2i}{\omega}$. The Fourier transform of $\frac{1}{2}$ [H(t+1/2)-H(t-1/2)] is. [GATE-2015]

(a)
$$\frac{\sin\left(\frac{\omega}{2}\right)}{\frac{\omega}{2}}$$
 (b) $\frac{\cos\left(\frac{\omega}{2}\right)}{\frac{\omega}{2}}$ (c) $\sin\left(\frac{\omega}{2}\right)$ (d) 0

4. A periodic function f(x) of period 2π is defined in the interval $(-\pi < x < \pi)$ $f(x) = \begin{cases} -1, & -\pi < x < 0 \\ 1, & 0 < x < \pi \end{cases}$ (a) The appropriate Fourier series expansion for f(x) is. (b) $f(x) = \left(\frac{4}{\pi}\right) [\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots]$

(c)
$$f(x) = \left(\frac{4}{\pi}\right) \left[\sin x - \frac{\sin 3x}{3} + \frac{\sin 5x}{5} - \cdots\right]$$

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. www.careerspectra.in

(d)
$$f(x) = \left(\frac{4}{\pi}\right) \left[\cos x + \frac{\cos 3x}{3} + \frac{\cos 5x}{5} + \cdots\right]$$

(e) $f(x) = \left(\frac{4}{\pi}\right) \left[\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} - \cdots\right]$

5. The coefficient of e^{ikx} in the Fourier expansion of $u(x) = Asin^2(\alpha x)$ for $k = -2\alpha$ is. [GATE-2017] (a) A/4 (b) -A/4 (c) A/2 (d) -A/2

6. Let θ be a variable in the range $-\pi \le \theta < \pi$. Now consider a function $\psi(\theta) = \begin{cases} 1 & for \frac{-\pi}{2} \le \theta < \frac{\pi}{2} \\ 0 & otherwise \end{cases}$ if its Fourier-series is written as $\psi(\theta) = \sum_{m=0}^{\infty} e^{-im\theta}$, then the value of

 $|C_3|^2$ (rounded off to three decimal places) is_____

7. If
$$x = \sum_{k=1}^{\infty} a_k sinkx$$
, for $-\pi \le x \le \pi$, the value of a_2 is _____ [GATE-2020]

8. Let
$$f_n(x) = \begin{cases} 0, \ x < -\frac{1}{2n} \\ n, \frac{-1}{2n} < x < \frac{1}{2n} \end{cases}$$
 The value of $\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) sinx dx$ is _____.
 $0, \frac{1}{2n} < x \end{cases}$ [GATE-2020]

COMPLEX ANALYSIS

1. The value of the integral $\oint_C \frac{e^z \sin(z)}{z^2} dz$, where the contour *C* is the unit circle: |z-2|=1, is (a) $2\pi i$ (b) $4\pi i$ (c) πi (d) 0

2. Which of the following statements is **TRUE** for the function $f(z) = \frac{z \sin z}{(z-\pi)^2}$? [GATE-2010]

- (a) f(z) is analytic everywhere in the complex plane
- (b) f(z) has a zero at $z = \pi$
- (c) f(z) has a pole of order 2 at $z = \pi$
- (d) f(z) has a simple pole at $z = \pi$

3. Consider a counterclockwise circular contour |z| = 1 about the origin. Let $f(z) = \frac{z \sin z}{(z-\pi)^2}$. then the integral $\oint f(dz)$ over this contour is: [GATE-2011] (a) $-i\pi$ (b) zero (c) $i\pi$ (d) $2i\pi$

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. www.careerspectra.in

Page | 6

4.	For the function	$f(z) = \frac{16z}{(z+3)(z-1)^2}$, re	sidue at the p	pole $z = 1$ is	s (your answer
	should be an int	eger)			[GATE-2013]
5.	The value of the (a) $2\pi i$	e integral $\oint_C \frac{z^2}{e^z + 1} dz$ wl (b) $2\pi^2 i$	here <i>C</i> is the (c) $4\pi^3$	circle $ \mathbf{z} = 4$	l, is. [GATE-2014] (d) 4π ² i
C	0 1		1	XX 71 · 1	6.4. 6.11
0.	Consider a com	plex function $f(z) = \frac{1}{2}$	$z\left(z+\frac{1}{2}\right)\cos(z\pi)$	which one	of the following
	statements is co	rrect? $= 0$ and	1		[GATE-2015]
	(a) $f(z)$ has sin	inple poles at $z = 0$ and	$Z = -\frac{1}{2}$		
	(b) $f(z)$ has in	finite number of second	= <u>2</u> d order poles		
	(c) j (2) nus ni		a order poies		
7.	If $f(x) = e^{-x^2}$	and $g(x) = x e^{-x^2}$, t	hen.		[GATE-2015]
	(a) f and g are (b) f is different	ntiable everywhere but	g is not		
	(c) g is differe	ntiable everywhere bu	f is not		
	(d) <i>g</i> is discon	tinuous at $x = 0$			
8.	Consider $w = f$ D. Which one of (a) $u(x,y)$ satistics (b) $v(x,y)$ satistics	f(z) = u(x, y) + iv(x) of the following option of the Laplace equation of the Laplace equation	y) to be an a s is NOT cor in D inD	analytic fun rect?	ction in a domain [GATE-2014]
	(c) $\int_{z_1}^{z} f(z) dz$	is dependent on the ch	oice of the co	ontour betw	een z_1 and z_2 in D
	$(\mathbf{u}) = \mathbf{I}(\mathbf{z})$ call be	Taylor expended in D			
9.	Which of the fo	llowing is an analytic	function of z	everywhere	in the complex
	(a) z^2	(b) $(z^*)^2$	(c) $ z ^2$		(d) \sqrt{z}
10.	The contour interaction along the real at (up to two decine)	egral $\oint \frac{dz}{1+z^2}$ evaluated xis and closed in the lo nal places).	along a conto wer half-pla	our going fro ne circle is e	om−∞ to +∞ equal to [GATE-2017]
11.	The imaginary part of the function	part of an analytic com tion is zero at the origi	plex function n. The value	n is $v(x,y)=2$ of the real p	<i>2xy</i> + <i>3y</i> . The real part of the function
	at 1+ <i>i</i> is	(up to two de	cimal places))	[GATE-2017]
	14, R	AIPUR ROAD, NEAR SU	RVEY CHOWI	K, DEHRADU	N

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUNCONTACT:- +919045460409, +919870827730website:- www. www.careerspectra.in

[GATE-2019]

- The absolute value of the integral $\int \frac{5z^3+3z^2}{z^2-4} dz$, over the circle |z-1.5|=1 in 12. complex plane, is _____ (up to two decimal places). [GATE-2018]
- The pole of the function $f(z) = \cot z$ at z = 0 is. 13. [GATE-2019] (a) a removable pole (b) an essential singularity (c) a simple pole (d) a second order pole
- The value of the integral $\int_{-\infty}^{\infty} \frac{\cos(kx)}{x^2 + a^2} dx$, where k > 0 and a > 0, is 14.

(a)
$$\frac{\pi}{a}e^{-ka}$$
 (b) $\frac{2\pi}{a}e^{-ka}$ (c) $\frac{\pi}{2a}e^{-ka}$ (d) $\frac{3\pi}{2a}e^{-ka}$

15. For a complex variable z and the contour c: |z|=1 taken in the counter clockwise direction $\frac{1}{2\pi i} \oint_C \left(z - \frac{2}{z} + \frac{3}{z^2} \right) dz =$ _____ [GATE-2020]

DIFFERENTIAL EQUATION

The solution of the differential equation for $y(t): \frac{d^2y}{dt^2} - y = 2\cosh(t)$, subject to 1. the initial conditions y(0) = 0 and $\frac{dy}{dt}|_{t=0} = 0$, is. [GATE-2010] (a) $\frac{1}{2}\cos h(t) + t\sinh(t)$ (b) $-\sinh(t) + \cosh(t)$ (c) t cosh(t) (d) $t \sinh(t)$

The solutions to the differential equation $\frac{dy}{dx} = -\frac{x}{y+1}$ are a family of. [GATE-2010] 2. (a) Circles with different radii

- (b) Circles with different centres
- USPECTRA (c) Straight lines with different slopes

(d) Straight lines with different intercepts on the v-axis

The solution of the differential equation $\frac{d^2y}{dt^2} - y = 0$, subject to the boundary 3. conditions y(0) = 1 and $y(\infty) = 0$ is. [GATE-2014] (b) $\cosh t + \sinh t$ (a) $\cos t + \sin t$ (c) cos t- sin t (d) cosh t- sinh t

A function y(z) satisfies the ordinary differential equation $y'' + \frac{1}{2}y' - \frac{m^2}{z^2}y = 0$, 4. where m = 0, 1, 2, 3,... Consider the four statements P, Q, R, S as given below. P: z^m and z^{-m} are linearly independent solutions for all values of m Q: z^m and z^{-m} are linearly independent solutions for all values of m > 0R: ln z and 1 are linearly independent solutions for m = 0

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN

CONTACT:-+919045460409,+919870827730 website:-www.www.careerspectra.in

			Career	Spectra
	S: z^m and $\ln z$ The correct op	are linearly independ tion for the combinat	ent solutions for all valu ion of valid statements i	nes of <i>m</i> s
	(a) P, R and S (c) Q and R or	only ıly	(b) P and R on (d) R and S onl	[GATE-2015] ly y
5.	Consider the li	inear differential equa	ation $\frac{dy}{dx} = xy$. If $y = 2$ a	t $x = 0$, the value of y
	at $x = 2$ is give (a) e^{-2}	en by. (b) 2e ⁻²	(c) e ⁻²	[GATE-2016] (d) 2e ²
6.	Consider the d	lifferential equation $\frac{d}{d}$ up to two decimal place	$\frac{y}{x} + y \tan(x) = \cos(x).$ ces).	If y(0) = 0, y $(\frac{\pi}{3})$ is [GATE-2017]
7.	Given $\frac{d^2 f(x)}{dx^2}$ - value of $f(0.5)$	$2\frac{df(x)}{dx} + f(x) = 0 \text{ an}$ is (up t	d boundary conditions f o two decimal places).	(0)=1 and f1(0)=0, the [GATE-2018]
8.	For the difference product of its to $(a) \frac{1}{x}$	ntial equation $\frac{d^2y}{dx^2} - \eta$ two independent solution (b) x	$n(n+1)\frac{y}{x^2} = 0$, where tions is. (c) x^n	<i>n</i> is a constant, the [GATE-2019] (d) $\frac{1}{x^{n+1}}$
9.	Which one of	the following is a solu	ution of $\frac{d^2 u(x)}{dx^2} = k^2 u(x)$), for k real ?
	(a) e^{-kx}	(b) sin kx	(c) cos kx	[GATE-2020] (d) sinh x
OTH	IER QUESTI	ONS		
1.	The number of distinguishable	f distinct ways of place boxes is	cing four indistinguishat 	ble balls into five [GATE-2013]
2.	The scale factor polar coordina (a) 1, r ² , r ² sin ² (c) 1, 1, 1	bors corresponding to t tes are. $^{2}\theta$	he covariant metric tens (b) 1, r ² sin ² θ (d) 1, r, r, sinθ	or g _{ij} in spherical [GATE-2018]

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. www.careerspectra.in

ANSWER KEY

MATRICES

			U	3.	C	4.	D	5.	С	6.	В
7. 2, 2	5, 5	8.	D	9.	С	10.	А	11.	В	12.	А
13. (C	14.	С								

VECTOR ANALYSIS

1.	А	2.	D	3.	В	4.	Α	5.	D	6.	D
7.	В	8.	D	9.	D						

FOURIER ANALYSIS & LAPLACE TRANSFORM

1.	D	2.	1.33	3.	A	4.	A	5.	В	6.	0.010
											to
											0.013
7.	1	8.	0								

COMPLEX ANALYSIS

1.	D	2.	C	3.	В	4.	3	5.	С	6.	D
7.	В	8.	С	9.	А	10.	π	11.	3	12.	81.64
13.	С	14.	А	15.	-2						

DIFFERENTIAL EQUATION

2.

D

1.	D	2.	А	3.	D	4.	С	5.	D	6.	0.52
7.	0.81	8.	В	9.	А						

OTHER QUESTIONS

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN

CONTACT:-+919045460409,+919870827730 website:- www. www.careerspectra.in

Page | 10